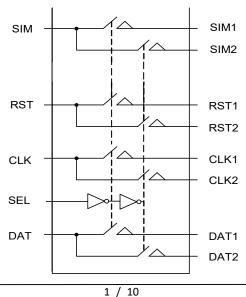


Low On Resistance, Quad SPDT Analog Switch

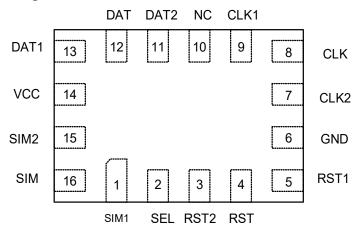
Descriptions

The RLCS1567 is a high performance, quad, Single Pole Double Throw (SPDT) analog switch that features ultra-low Ron of 1.8 Ω (typical) at 3.0V VCC. The RLCS1567 operates over a wide VCC range of 2.3V to 4.5V and is designed for break-before-make operation. The select input is TTL-level compatible. RLCS1567 is also featured with smart circuitry to minimize VCC leakage current even when the control voltage is lower than VCC supply voltage. This feature suits mobile handset applications by allowing direct interface with baseband processor general-purpose IO with minimal battery consumption. In other word, there is no need of additional device to shift control level to be the same as that of VCC in real application.


Features

- Supply voltage: 1.5 ~ 5.5V
- ultra-low On Resistance:1.8 Ω
- -3dB Bandwidth: 700MHz
- Rail-to-Rail Signal Range
- Break-Before-Make Switching
- Low quiescent current over an Expanded Control Input Range \triangleright
- QFN 1.8x2.6-16L Package

Applications


- Cell phones
- PDA
- Digital Camera
- Notebook
- LCD Monitor, TV and Set-Top Box
- Audio and Video Signal Routing
- Other electronic equipment

Functional Block Diagram

Functions and Pin Configuration

Pin configuration (Top view)

Pin Descriptions

Pin Number	Symbol	Descriptions
4,8,12,16	SIM, DAT, CLK, RST	Common Port
1,5,9,13	SIM1, DAT1, CLK1, RST1	Data Port (Normally closed)
3,7,11,15	SIM2, DAT2, CLK2, RST2	Data Port (Normally open)
2	SEL	Logic Input Control
14	VCC	Positive Power Supply
6	GND	Ground

Note: X=1 or 2,3,4

Function Descriptions

SEL	Function
0/1/1/1/	SIM1 Connected to SIM, DAT1 Connected to DAT
TEN CT	CLK1 Connected to CLK, RST1 Connected to RST
21, -36	SIM2 Connected to SIM, DAT2 Connected to DAT
1/	CLK2 Connected to CLK, RST2 Connected to RST

Order Information

Package		Part Number	Quantity Per Reel
QFN1.8x2.6-16L	Tape and Reel	RLCS1567QN16/R6	3,000PCS

Absolute Maximum Ratings (1)

Parameter	Symbol	Value	Unit
Supply Voltage	V _{CC}	-0.3 ~ 6.5	V
Control Input Voltage	V _{IN}	-0.3 ~ 6.5	V
DC Input Voltage (2)	V_{INPUT}	-0.3 ~ 6.5	V
Continuous Current SIM, DAT, CLK, RST		±100	mA
Peak Current SIM, DAT, CLK, RST (pulsed at 1ms 50%		±200	mA
duty cycle)		±200	IIIA
Peak Current SIM, DAT, CLK, RST (pulsed at 1ms 10%		±200	mA
duty cycle)		±200	ША
Storage Temperature Range	T _{STG}	-65 ~ 150	°C
Junction Temperature under Bias	TJ	150	°C
Lead Temperature (Soldering, 10 seconds)	TL	260	°C
Power Dissipation	P _D	250	mW

Recommend operating ratings (3)

Parameter	Symbol	Value	Unit
Supply Voltage Operating	Vcc	1.5 ~ 5.5	V
Control Input Voltage	V _{IN}	0.0 ~ V _{CC}	V
Input Signal Voltage	V _{IS}	0.0 ~ V _{CC}	V
Operating Temperature	T _A	-40 ~ 85	°C
Input Raise and Fall Time(Control Input V _{CC} =2.3~3.6V)	t _r ,t _f	0 ~ 10	ns/V
Thermal Resistance	R _{θJA}	350	°C/W

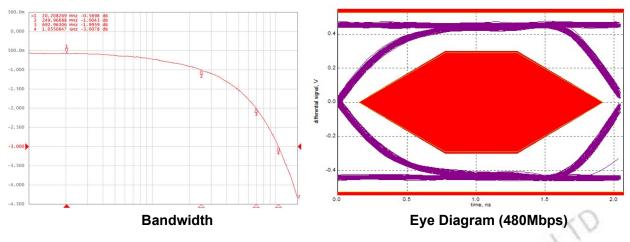
Note:

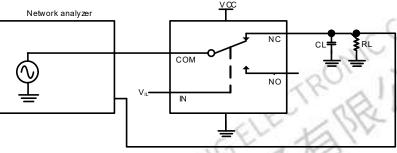
- 1. "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.
- 2. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
- 3. Control input must be held high or Low, it must not float.

DC Electronics Characteristics (Ta=25°C, VCC=4.5V, unless otherwise noted)

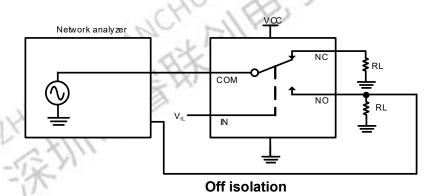
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Innut logic high lovel	\/	VCC: 3.0 ~ 4.5	1.6			V
Input logic high level	V_{IH}	VCC: 2.3 ~ 3.0	1.4			V
Input logic low lovel	\/	VCC: 3.0 ~ 4.5			0.6	V
Input logic low level	VIL	VCC: 2.3 ~ 3.0			0.4	V
Supply quiescent current	Icc	I _{OUT} =0, V _{IN} =0 or V _{IN} =VCC			1.0	uA
Increase in I _{CC} per input	Ісст	I _{OUT} =0, VCC=4.5 V _{IN} >1.8 or V _{IN} <0.5			2.0	uA
Input leakage current	I _{IN}	V _{SEL} =VCC			±1.0	uA
Off state switch leakage current	I _{OFF}				±1.0	uA
On state switch leakage current	I _{ON}		- 1	CC	±1.0	uA
On-Resistance	Ron	VCC=4.5V, V _{IS} =0~4.5V, I _{ON} =100mA,	ROP	1.5	(1)	Ω
Cir redictario		VCC=3.0V, V _{IS} =0~3.0V, I _{OUT} =100mA,	何"	1.8		Ω
On-Resistance Matching Between	ΔRon	VCC=4.5V, V _{IS} =0.8V, I _{OUT} =100mA,		0.1		Ω
Channels	ΔKON	VCC=3.0V, V _{IS} =0.8V, I _{OUT} =100mA,		0.14		Ω
On Resistance Files	D	VCC=4.5V, V _{IS} =0~4.5V, I _{OUT} =100mA,			0.5	Ω
On-Resistance Flatness	R _{FLAT} (ON)	VCC=3.0V, V _{IS} =0~3.0V, I _{OUT} =100mA,			0.8	Ω

AC Electronics Characteristics (Ta=25°C, VCC=4.5V, unless otherwise noted)


Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
		VCC=4.5V,				
Turn-On Time	T _{ON}	V _{IS} =1.5V,		200		ns
		$C_L=35pF, R_L=50\Omega$				
		VCC=4.5V,				
Turn-Off Time	T _{OFF}	V _{IS} =1.5V,		200		ns
		C _L =35pF, R _L =50Ω				
Break-Before-Make time	Тввм	Generate by design		100		ns
-3dB Bandwidth	BW	R _L =50Ω, C _L =0pF		700		MHz
Off isolation (Per Channel)	OIRR	F=100KHz, R _L =50Ω		-50		dB
Crosstalk (Channel to	Vtolk	C-100KH- D -500		-50	1	dB
Channel)	Xtalk	$F=100KHz, R_L=50\Omega$		-50	() ,	uБ
Total Hammania Distantian	TUD	F=20Hz to 20KHz		- 90).	JP
Total Harmonic Distortion	THD	$R_L=32\Omega$, $V_{IS}=0.5Vp-p$	- 43	-80	/\	dB


Capacitance (Ta=25°C unless otherwise noted)

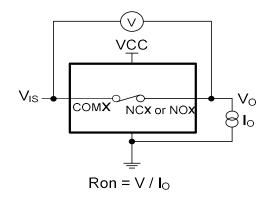
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Off capacitance	C_{OFF}	F=1MHz, VCC=3.3V	1/2	5		pF
On capacitance	C_ON	F=1MHz, VCC=3.3V	()	8		рF
2	-014	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-			Γ.
		10, 72				
	70	11/20				
	'DL	L (8)				
11.	M. 4	X Co.				
RU	1/2X	XI				
EM, 8	0					
14/2 17	(),					
11/42 1/1/2						
THE TEN						
2, -1						
1						

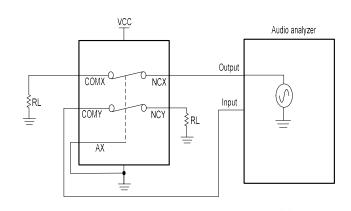


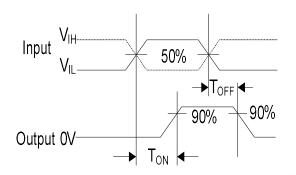
Typical Characteristics (Ta=25°C, VCC=3.3V, unless otherwise noted)

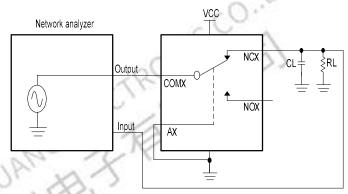


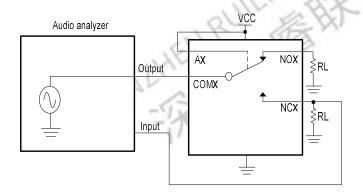
Bandwidth

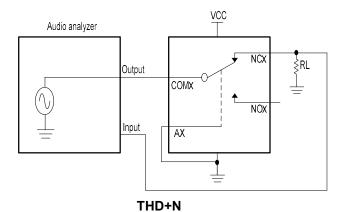

COM1 NC1


Crosstalk


Test Circuits

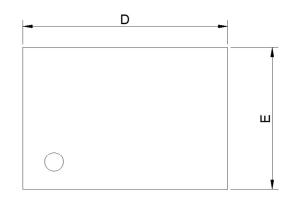


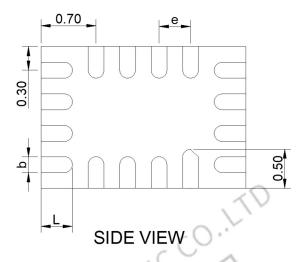

Crosstalk (Xtalk)

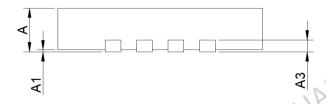

ON/OFF Time Waveforms (Ton / Toff)

Bandwidth (BW)

Off isolation (OIRR)

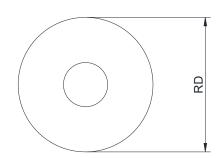


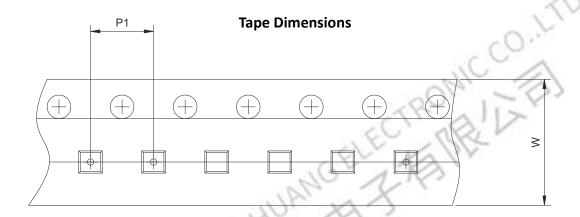

7 / 10

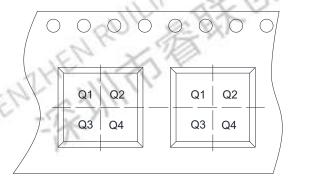

Package Outline Dimensions

QFN 1.8 x 2.6-16L

TOP VIEW




TOP VIEW			DE VIEW
P4	A3	ANGELECTE	J. B. L.
SIDE VIEW	JILIANCHO	Eller.	
Symbol	D	imensions in Millime	eters
Cymbol	Min.	Тур.	Max.
A +	0.50	0.55	0.60
A1	0.00	-	0.05
A3		0.15 Ref.	
D	2.55	2.60	2.65
E	1.75	1.80	1.85
L	0.30	0.40	0.50
b	0.15	0.20	0.25


TAPE AND REEL INFORMATION

Reel Dimensions

Quadrant Assignments For PIN1 Orientation In Tape

User Direction of Feed

RD	Reel Dimension	☑ 7inch	13inch		
w	Overall width of the carrier tape	№ 8mm	☐ 12mm	☐ 16mm	
P1	Pitch between successive cavity centers	☐ 2mm	✓ 4mm	☐ 8mm	
Pin1	Pin1 Quadrant	₽ Q1	☐ Q2	□ Q3	☐ Q4

Important Note

As the RLC product continues to improve gradually, we may experience significant changes. RLC reserves the right to correct, modify, enhance, and amend the products and services they provide, as well as the right to discontinue any product or service. Before placing an order, customers should obtain the latest information to verify that it is current and complete. All products sold must comply with RLC's terms and conditions in order to ensure proper processing of orders. RLC guarantees that the products they sell conform to the terms and conditions applicable to semiconductor sales. Only under this guarantee does RLC consider it necessary to employ testing and quality control measures for their products. Unless mandated by applicable laws requiring strict compliance, there is no obligation for testing all product parameters. RLC does not assume responsibility for customer product design or application. The materials provided contain circuit examples and usage methods solely for reference purposes; they do not guarantee suitability for volume production designs. Additionally, these materials may contain errors that could result in damages incurred by customers; therefore, RLC disclaims any liability in such cases. Customers are advised to use products within the limits specified in these materials while paying particular attention to absolute maximum ratings, operating voltages, and voltage characteristics. Any use of products outside of these specifications absolves RLC from responsibility; customers must accept full responsibility themselves. To minimize risks associated with customer-designed applications, adequate design safety measures should be implemented. When using RLC products, please ensure compliance with relevant laws and regulations pertaining to your country or region regarding application standards as well as testing requirements related to safety performance. For exports of RLC products overseas, it is essential that you adhere strictly to foreign exchange regulations and transaction laws throughout all necessary procedures involved in exportation processes. In case of disposal of any abandoned RLC product(s), please follow appropriate rules and regulations for proper disposal.

RLC products are not designed to be radiation - resistant. Based on the intended usage, customers can incorporate radiation protection measures during the product design process. Under normal circumstances, RLC products do not harm human health. However, since they contain chemicals and heavy metals, do not put them in your mouth. Additionally, the fracture surfaces of wafers and chips can be sharp. When touching them with bare hands, please be careful to avoid injury. Semiconductor products have a certain probability of failure or malfunction. To prevent disruptions and social damages resulting from personal accidents, fire accidents, etc., as well as to avoid malfunctions, customers are required to be responsible for comprehensive design, implementing fire - spread prevention measures, and safety design against misoperation. Please conduct a full assessment of the entire system, and customers can determine its applicability on their own.

This material also includes content related to the company's copyright and know - how. The records in this material are not intended to promise or guarantee the implementation and use of the company's and third - party intellectual property and other rights. Without the permission of our company, it is strictly prohibited to reprint, copy any part of this work, or disclose the material information to third parties.RLC shall not be held responsible for any damage or harm that occurs which is not related to the product itself, as well as for any infringement of third - party rights such as intellectual property rights.

For more details about this material, please contact our sales office.