

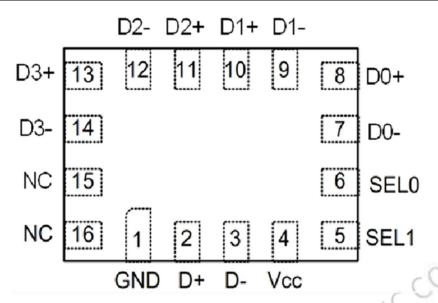
# Dual 4:1 High-Speed USB2.0 (480Mbps) SPQT Analog Switch

### **Descriptions**

The RLCS4735Q is a bidirectional low-power dual port, high-speed, USB 2.0 analog switch with integrated protection for USB Type-C<sup>™</sup> systems. The device is configured as a dual 4:1 or 1:4 switch. It is optimized for use with the USB 2.0 DP/DM lines in a USB Type-C<sup>™</sup> system.

The RLCS4735Q has low bit-to-bit skew and high channel-to-channel noise isolation, and is compatible with various standards, such as high-speed USB 2.0 (480Mbps). Each switch is bidirectional and offers little or no attenuation of the high-speed signals at the outputs. Its bandwidth is wide enough to pass high-speed USB 2.0 differential signals (480 Mb/s) with good signal integrity.

GPIO controls of SELx are 1.8V logic compatible. The RLCS4735Q is available in QFN 1.8x2.6-16L with Pb-free and Halogen-free making it a perfect candidate for mobile and space constrained applications.


#### **Features**

- Low On-resistance, Ron=3Ω when VCC =5V
- > 1.8V Logic Compatible Control Pin
- > D+/- Overrides VCC to Achieve True Isolation Even When Supply Is Dead
- High Off-Isolation: -100dB @ 100KHz
- Low Channel-to-Channel Crosstalk: -97dB @ 100KHz
- ➤ High Bandwidth (-3dB @800MHz) Suitable for USB2.0 High-Speed Routing
- ➤ Low Quiescent Current (<2uA) With Very Wide Supply Range (1.5V ~ 5.5V)

### **Applications**

- Anywhere a USB Type-C<sup>™</sup> or Micro-B Connector is Used
- Mobile Phones, Tablets and Notebooks

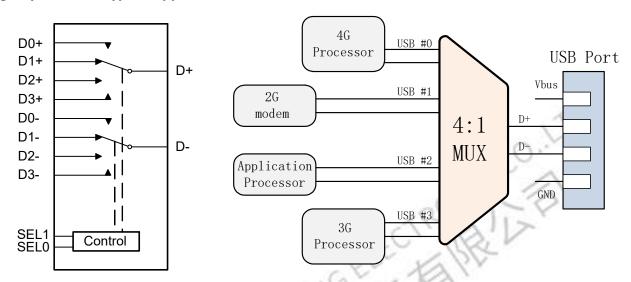




### **Pin Descriptions**

| Pin Number | Symbol | Descriptions                                   |
|------------|--------|------------------------------------------------|
| 1          | GND    | Ground                                         |
| 2          | D+     | D+ Common Port (HS or FS USB)                  |
| 3          | D-     | D- Common Port (HS or FS USB)                  |
| 4          | VCC    | Power Supply                                   |
| 5          | SEL1   | Path Selection Control Input (See Table Below) |
| 6          | SEL0   | Path Selection Control Input (See Table Below) |
| 7          | D0-    | D- From the 1st Source Path (HS or FS USB)     |
| 8          | D0+    | D+ From the 1st Source Path (HS or FS USB)     |
| 9          | D1-    | D- From the 2nd Source Path (HS or FS USB)     |
| 10         | D1+    | D+ From the 2nd Source Path (HS or FS USB)     |
| 11         | D2+    | D+ From the 3rd Source Path (HS or FS USB)     |
| 12         | D2-    | D- From the 3rd Source Path (HS or FS USB)     |
| 13         | D3+    | D+ From the 4th Source Path (HS or FS USB)     |
| 14         | D3-    | D- From the 4th Source Path (HS or FS USB)     |
| 15,16      | NC     | No Connect                                     |

### **Function Descriptions**


| SEL1 | SEL0 | Function           |
|------|------|--------------------|
| 0    | 0    | D+ = D0+, D- = D0- |
| 0    | 1    | D+ = D1+, D- = D1- |
| 1    | 0    | D+ = D2+, D- = D2- |
| 1    | 1    | D+ = D3+, D- = D3- |

### **Order Information**



| Pa               | ackage        | Part Number     | Quantity Per Reel |
|------------------|---------------|-----------------|-------------------|
| QFN 1.8x2.6 -16L | Tape and Reel | RLCS4735QN16/R6 | 3,000PCS          |

### **Logic Symbol and Typical Applications**



Logic Symbol Ty,

**Typical Applications (Mobile Phone Example)** 



# Absolute Maximum Ratings (1)

| Parameter                                                           | Symbol           | Value      | Unit |
|---------------------------------------------------------------------|------------------|------------|------|
| Supply Voltage                                                      | V <sub>CC</sub>  | -0.3 ~ 6.5 | ٧    |
| Control Input Voltage                                               | V <sub>IN</sub>  | -0.3 ~ 6.5 | ٧    |
| Continuous Current Through Dx +/- and D+/-                          |                  | ±100       | mA   |
| Peak Current Through Dx +/- and D+/- (pulsed at 1ms 50% duty cycle) |                  | ±200       | mA   |
| Storage Temperature Range                                           | T <sub>STG</sub> | -55 ~ 150  | °C   |
| Junction Temperature under Bias                                     | TJ               | 150        | °C   |
| Lead Temperature (Soldering, 10 seconds)                            | T∟               | 260        | °C   |
| Power Dissipation                                                   | P <sub>D</sub>   | 250        | mW   |

# Recommend Operating Ratings (2)

| Parameter                | Symbol          | Value      | Unit |  |
|--------------------------|-----------------|------------|------|--|
| Supply Voltage Operating | V <sub>CC</sub> | 1.5 ~ 5.5  | V    |  |
| Control Input Voltage    | V <sub>IN</sub> | -0.3 ~ 5.5 | V    |  |
| Input Signal Voltage     | V <sub>SW</sub> | -0.3 ~ 5.5 | V    |  |
| Operating Temperature    | TA              | -40 ~ 85   | °C   |  |
| Thermal Resistance       | $R_{\theta JA}$ | 360        | °C/W |  |

#### Note:

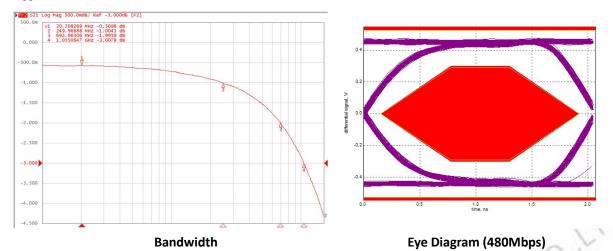
1. "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.



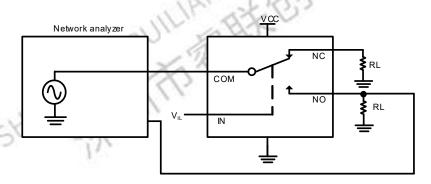
### DC Electronics Characteristics (Ta=25°C, VCC=3.3V, unless otherwise noted)

| Parameter                                                 | Symbol             | Conditions                                                      | Min. | Тур. | Max. | Unit |
|-----------------------------------------------------------|--------------------|-----------------------------------------------------------------|------|------|------|------|
| Input logic high lovel                                    | V                  | VCC: 3.3 ~ 5.5V                                                 | 1.6  |      |      | V    |
| Input logic high level                                    | V <sub>IH</sub>    | VCC: 1.5 ~ 3.3V                                                 | 1.4  |      |      | V    |
| Input logic low lovel                                     | .,                 | VCC: 3.3 ~ 5.5V                                                 |      |      | 0.6  | V    |
| Input logic low level                                     | $V_{IL}$           | VCC: 1.5 ~ 3.3V                                                 |      |      | 0.4  | V    |
| Supply quiescent current                                  | Icc                | I <sub>COM</sub> =0, V <sub>IN</sub> =0 or V <sub>IN</sub> =VCC |      |      | 1.0  | uA   |
| Increase in L. per input                                  |                    | I <sub>COM</sub> =0, VCC=4.5V                                   |      |      | 1.0  |      |
| Increase in I <sub>CC</sub> per input                     | Ісст               | V <sub>IN</sub> >1.8 or V <sub>IN</sub> <0.5                    |      |      |      | uA   |
| Off state leakage from                                    | 1                  | V <sub>COM</sub> = 5.5V , V <sub>NC(or NO)</sub> = 0V           |      |      | ±2.0 | uA   |
| COM <sub>X</sub> to NC <sub>X</sub> (or NO <sub>X</sub> ) | Ісомх              |                                                                 |      |      | 12.0 | uA   |
|                                                           | R <sub>ON1</sub>   | V <sub>COM</sub> =0 ~ 0.5V, I <sub>COM</sub> =30mA              |      | 6.2  | 7.2  | Ω    |
| On-Resistance                                             | R <sub>ON2</sub>   | V <sub>COM</sub> =0.5 ~ 2.0V, I <sub>COM</sub> =30mA            |      | 7.2  | 7.9  | Ω    |
| On-Resistance                                             | R <sub>ON3</sub>   | V <sub>COM</sub> =2.0 ~ 4.0V, I <sub>COM</sub> =30mA            | 1    | 5.2  | 7.2  | Ω    |
|                                                           | R <sub>ON4</sub>   | V <sub>COM</sub> =4.0 ~ 5.5V, I <sub>COM</sub> =30mA            | 412  | 3.3  | 3.8  | Ω    |
|                                                           | R <sub>FLAT1</sub> | V <sub>COM</sub> =0 ~ 0.5V, I <sub>COM</sub> =30mA              | )\   | 1.4  | ~    | Ω    |
| On Basistanaa Flatnass                                    | R <sub>FLAT2</sub> | V <sub>COM</sub> =0.5 ~ 2.0V, I <sub>COM</sub> =30mA            | De   | 1.0  |      | Ω    |
| On-Resistance Flatness                                    | R <sub>FLAT3</sub> | V <sub>COM</sub> =2.0 ~ 4.0V, I <sub>COM</sub> =30mA            | 12/6 | 3.2  |      | Ω    |
|                                                           | R <sub>FLAT4</sub> | V <sub>COM</sub> =4.0 ~ 5.5V, I <sub>COM</sub> =30mA            | 11.  | 0.6  |      | Ω    |
| On-Resistance                                             | A D                | V -0~F EV I -20mA                                               |      | 0.2  | 0.4  | _    |
| Matching Between Channels                                 | ΔR <sub>ON</sub>   | V <sub>COM</sub> =0~5.5V, I <sub>COM</sub> =30mA,               |      | 0.2  | 0.4  | Ω    |

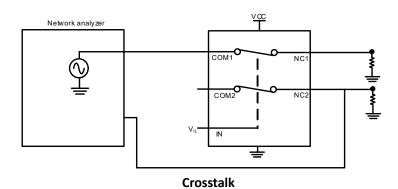
# AC Electronics Characteristics (Ta=25°C, VCC=3.3V, unless otherwise noted)


| Parameter                 | Symbol           | Conditions                                                        | Min. | Тур. | Max. | Unit |
|---------------------------|------------------|-------------------------------------------------------------------|------|------|------|------|
| Turn-On Time              | T <sub>ON</sub>  | V <sub>COM</sub> =1.5V, C <sub>L</sub> =35pF, R <sub>L</sub> =50Ω |      | 200  |      | ns   |
| Turn-Off Time             | T <sub>OFF</sub> | V <sub>COM</sub> =1.5V, C <sub>L</sub> =35pF, R <sub>L</sub> =50Ω |      | 200  |      | ns   |
| Break-Before-Make time    | T <sub>BBM</sub> | V <sub>COM</sub> =1.5V, C <sub>L</sub> =35pF, R <sub>L</sub> =50Ω |      | 500  |      | ns   |
| -3dB Bandwidth            | BW               | $R_L=50\Omega$ , $C_L=0pF$                                        |      | 800  |      | MHz  |
| Off inalation             | OIRR             | F=1KHz, R <sub>L</sub> =50Ω                                       |      | -81  |      | dB   |
| Off isolation             |                  | $F=10$ KHz, $R_L=50Ω$                                             |      | -80  |      | dB   |
| Crosstall                 | V+alle           | F=1KHz, R <sub>L</sub> =50Ω                                       |      | -83  |      | dB   |
| Crosstalk                 | Xtalk            | F=10KHz, R <sub>L</sub> =50Ω                                      |      | -82  |      | dB   |
| Total Harmania Distantian | TUD              | F=20Hz to 20KHz                                                   |      | 00   |      | ٩n   |
| Total Harmonic Distortion | THD              | $V_{COM}$ =600mVp-p @R <sub>L</sub> =32 $\Omega$ ,                |      | -80  |      | dB   |

### Capacitance (Ta=25°C, VCC=3.3V, unless otherwise noted)

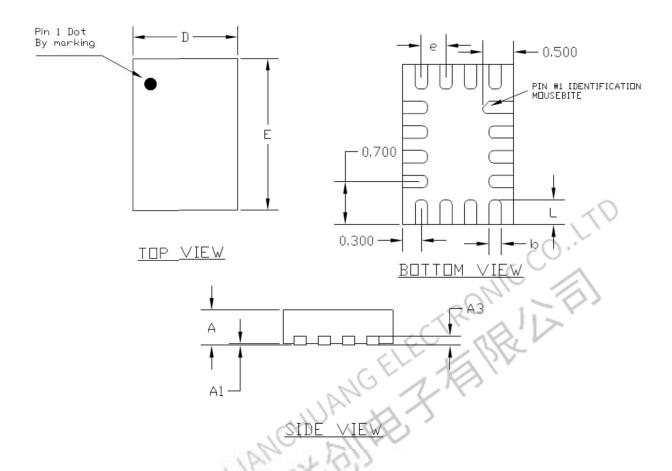

| Parameter       | Symbol           | Conditions | Min. | Тур. | Max. | Unit |
|-----------------|------------------|------------|------|------|------|------|
| Off capacitance | C <sub>OFF</sub> | F=100KHz   |      | 5    |      | pF   |
| On capacitance  | Con              | F=100KHz   |      | 7    |      | pF   |




### Typical Characteristics (Ta=25°C, VCC=3.3V, unless otherwise noted)



### Bandwidth




Off isolation





### QFN 1.8x2.6 -16L



# Package outline dimensions

| C 31 E. T. | Dimension in Millimeters |      |      |  |  |
|------------|--------------------------|------|------|--|--|
| Symbol     | Min.                     | Тур. | Max. |  |  |
| A          | 0.50                     | 0.55 | 0.60 |  |  |
| A1         | 0.00                     | -    | 0.05 |  |  |
| A3         | 0.15 Typ.                |      |      |  |  |
| D          | 1.75                     | 1.80 | 1.85 |  |  |
| E          | 2.55                     | 2.60 | 2.65 |  |  |
| L          | 0.30                     | 0.40 | 0.50 |  |  |
| b          | 0.15                     | 0.20 | 0.25 |  |  |
| е          | 0.40 Typ.                |      |      |  |  |



#### **Important Note**

As the RLC product continues to improve gradually, we may experience significant changes. RLC reserves the right to correct, modify, enhance, and amend the products and services they provide, as well as the right to discontinue any product or service. Before placing an order, customers should obtain the latest information to verify that it is current and complete. All products sold must comply with RLC's terms and conditions in order to ensure proper processing of orders. RLC guarantees that the products they sell conform to the terms and conditions applicable to semiconductor sales. Only under this guarantee does RLC consider it necessary to employ testing and quality control measures for their products. Unless mandated by applicable laws requiring strict compliance, there is no obligation for testing all product parameters. RLC does not assume responsibility for customer product design or application. The materials provided contain circuit examples and usage methods solely for reference purposes; they do not guarantee suitability for volume production designs. Additionally, these materials may contain errors that could result in damages incurred by customers; therefore, RLC disclaims any liability in such cases. Customers are advised to use products within the limits specified in these materials while paying particular attention to absolute maximum ratings, operating voltages, and voltage characteristics. Any use of products outside of these specifications absolves RLC from responsibility; customers must accept full responsibility themselves. To minimize risks associated with customer-designed applications, adequate design safety measures should be implemented. When using RLC products, please ensure compliance with relevant laws and regulations pertaining to your country or region regarding application standards as well as testing requirements related to safety performance. For exports of RLC products overseas, it is essential that you adhere strictly to foreign exchange regulations and transaction laws throughout all necessary procedures involved in exportation processes. In case of disposal of any abandoned RLC product(s), please follow appropriate rules and regulations for proper disposal.

RLC products are not designed to be radiation - resistant. Based on the intended usage, customers can incorporate radiation protection measures during the product design process. Under normal circumstances, RLC products do not harm human health. However, since they contain chemicals and heavy metals, do not put them in your mouth. Additionally, the fracture surfaces of wafers and chips can be sharp. When touching them with bare hands, please be careful to avoid injury. Semiconductor products have a certain probability of failure or malfunction. To prevent disruptions and social damages resulting from personal accidents, fire accidents, etc., as well as to avoid malfunctions, customers are required to be responsible for comprehensive design, implementing fire - spread prevention measures, and safety design against misoperation. Please conduct a full assessment of the entire system, and customers can determine its applicability on their own.

This material also includes content related to the company's copyright and know - how. The records in this material are not intended to promise or guarantee the implementation and use of the company's and third - party intellectual property and other rights. Without the permission of our company, it is strictly prohibited to reprint, copy any part of this work, or disclose the material information to third parties.

RLC shall not be held responsible for any damage or harm that occurs which is not related to the product itself, as well as for any infringement of third - party rights such as intellectual property rights.

For more details about this material, please contact our sales office.