

### High-Voltage Protection 3.5mm Audio Line Over-Voltage-Protection (OVP)

### **Descriptions**

RLCS331 is over voltage protection IC designed to protect the audio codecs and electronics of portable devices. Connecting the RLCS331 between the 3.5mm jack and audio path electronics provides protection against high-voltage conditions to ±35V. The 9-Ball Wafer Level Chip Scale Package (WLCSP) 1.2mm x 1.2mm with Pb-free and Halogen-free, makes it ideal for mobile device. 9-Ball WLCSP 1.2mm x 1.2mm.

### **Features**

- Wide VCC Supply Range: 2.3V~5.0V
- Protects Devices from High-Voltage Conditions: ±35V Tolerant Inputs
- OVP Threshold: ±4.1V
- ➤ High Input/Output Swing >2.5V rms, Superior SNR >130dBA.
- > Ultra-Low THD+N: -106dB, 32Ω Load; -112dB, 600Ω Load; -120dB, 100kΩ Load
- Audio Path Pop & Click Elimination
- > 9-Ball WLCSP 1.2mm x 1.2mm

# **Applications**

- ➤ 4G/5G Smart Phone, Tablets and Mobile Device with 3.5mm Audio Jack
- Bluetooth/Intelligent Speaker

# **Typical Application Circuit**

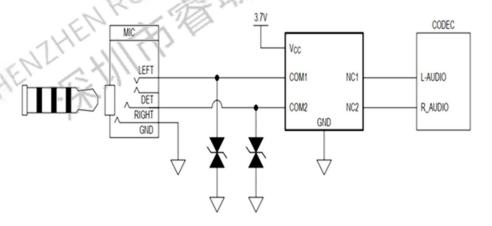



Fig.1 Typical Application Circuit



# **Functional Diagram**

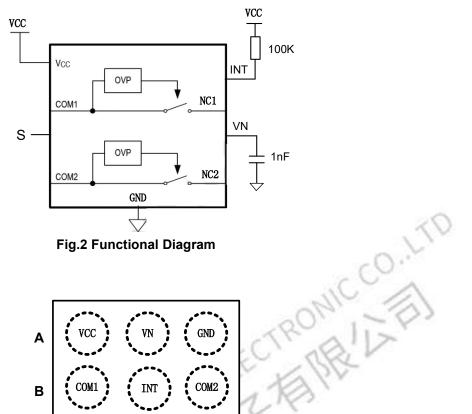



Fig.2 Functional Diagram

# **Pin Configuration**

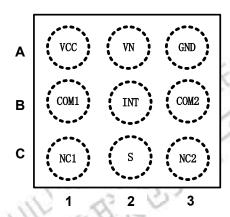



Fig.3 Top-Through View Pin Configuration

| Pin# | Name | Type | Description                                                       |
|------|------|------|-------------------------------------------------------------------|
| A1   | VCC  | DWD  | 1.65~5.5V Positive Supply. Bypass VCC to GND 0.1uF decoupling     |
|      | VCC  | PWR  | capacitor ACAP                                                    |
| A2   | VN   | GND  | 1nF Capacitor Connection to GND as close as possible              |
| A3   | GND  | GND  | Primary Ground Connection                                         |
| B1   | COM1 | I/O  | External Audio Line 1. Connect to external audio jack             |
| B2   | INT  | I/O  | Open Drain Interrupt Output when COMx reach OVP threshold         |
| В3   | COM2 | I/O  | External Audio Line 2. Connect to external audio jack             |
| C1   | NC1  | I/O  | Protected Audio Line 1. Connect to internal audio codec           |
| C2   | S    | I/O  | GPIO control. When S is low, NCx connect to COMx; When S is high, |
| 02   | 3    | 1/0  | disconnection                                                     |
| C3   | NC2  | I/O  | Protected Audio Line 2. Connect to internal audio codec           |

**Table-1 Pin Descriptions** 

### **Order Information**

| Pac               | kage |               | Part Number   | Quantity per Reel |
|-------------------|------|---------------|---------------|-------------------|
| WLCSP 1.2 x1.2 -9 | Ball | Tape and Reel | RLCS331WL9/R6 | 3,000PCS          |

**Table-2 Order Information** 



Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1)

| Parameter                            | Symbol           | Range      | Unit |
|--------------------------------------|------------------|------------|------|
| Power Supply Voltage                 | VCC              | -0.5 ~ 6.0 | ٧    |
| Common Ports Voltage                 | V <sub>COM</sub> | ±35        | ٧    |
| Internal Ports Voltage               | $V_{NC}$         | ±6         | ٧    |
| VN Voltage                           | $V_{VN}$         | -35 ~ +0.5 | V    |
| Continuous Current into Device       | IDC              | 750        | mA   |
| Storage Temperature Range            | T <sub>STG</sub> | -55 ~ 150  | °C   |
|                                      | VCC              | ±2         | KV   |
| ESD HBM, ANSI/ESDA/JEDEC JS-001-2012 | COMx             | ±2         | KV   |
|                                      | Other I/O Pins   | ±2         | KV   |
|                                      | VCC              | ±200       | V    |
| ESD MM, JESD22-A115                  | COMx             | ±2         | KV   |
|                                      | Other I/O Pins   | ±2         | KV   |

### **Table-3 Absolute Maximum Ratings**

(1) Stresses beyond those listed in Table-2 Absolute Maximum Ratings may cause permanent damage to the device. They are stress ratings only, which do not imply functional operation of the device at these or any other conditions. Beyond those indicated under Recommended Operating Conditions, exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

**Recommend Operating Conditions** 

| Parameter              | Symbol           | Range     | Unit |
|------------------------|------------------|-----------|------|
| Power Supply Voltage   | VCC              | 2.3 ~ 5.5 | V    |
| Common Ports Voltage   | V <sub>COM</sub> | ±5        | V    |
| Internal Ports Voltage | $V_{NC}$         | ±3.5      | V    |
| Operating Temperature  | $T_A$            | -40 ~ 85  | °C   |

Table-4 Recommend Operating Conditions

(1) TBD SHENZHICK



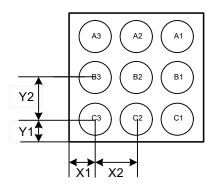
Electrical Characteristics (Ta=25°C, VCC=3.3V, unless otherwise specified)

| V <sub>CC</sub> I <sub>CC</sub> V <sub>IH</sub> V <sub>IL</sub>                                                        | S=1 disconnection S=0 connection                                                 | <b>Min.</b> 2.3                         | 3.3<br>50      | <b>Max.</b> 5.0 | V                                |
|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------|----------------|-----------------|----------------------------------|
| I <sub>CC</sub>                                                                                                        |                                                                                  | 2.3                                     | 50             | 5.0             | _                                |
| I <sub>CC</sub>                                                                                                        |                                                                                  | 2.3                                     | 50             | 5.0             | _                                |
| V <sub>IH</sub>                                                                                                        |                                                                                  |                                         |                |                 |                                  |
| V <sub>IH</sub>                                                                                                        | S=0 connnection                                                                  |                                         |                |                 | uA                               |
|                                                                                                                        |                                                                                  |                                         | 160            |                 | uA                               |
|                                                                                                                        |                                                                                  |                                         |                |                 | ,                                |
| $V_{IL}$                                                                                                               |                                                                                  | 1.6                                     |                | 5.5             | V                                |
|                                                                                                                        |                                                                                  | -0.1                                    |                | 0.5             | V                                |
| $R_{PD}$                                                                                                               |                                                                                  |                                         | 2              |                 | ΜΩ                               |
| D SIGNA                                                                                                                | L RANGE                                                                          |                                         |                |                 |                                  |
| R <sub>AUDIO</sub>                                                                                                     | V <sub>IS</sub> = -3.0V~+3.0V<br>І <sub>ОUТ</sub> =30mA                          |                                         | 0.6            | 1.1             | Ω                                |
| R <sub>FLAT</sub>                                                                                                      | V <sub>IS</sub> = -3.0V~+3.0V<br>I <sub>OUT</sub> =30mA                          |                                         | 0.001          | 0.005           | Ω                                |
| $\Delta R_{ON}$                                                                                                        | V <sub>IS</sub> = -3.0V~+3.0V<br>I <sub>OUT</sub> =30mA                          | 50/                                     | 0.02           | 0.05            | Ω                                |
| V <sub>IS</sub>                                                                                                        | THD+N < 0.1%<br>@R <sub>L</sub> =600Ω                                            | ~ (3)                                   | 3              | 2.5             | Vrms                             |
|                                                                                                                        | 70 11                                                                            | (0)                                     |                |                 |                                  |
| TUD AL                                                                                                                 | f=10Hz to 20KHz<br>V <sub>IS</sub> =2Vrms @R <sub>L</sub> =600Ω                  |                                         | -112           |                 | dB                               |
| THD+N                                                                                                                  | f=10Hz to 20kHz<br>V <sub>Is</sub> =1Vrms @RL=32Ω                                |                                         | -106           |                 | dB                               |
| SNR                                                                                                                    | f=10Hz to 20KHz,<br>Inputs grounded @R∟=32Ω                                      | 130                                     |                |                 | dBrA                             |
| OIRR                                                                                                                   | f=10Hz to 20KHz,<br>V <sub>IS</sub> = 1Vrms @R <sub>L</sub> =32Ω                 |                                         | -100           |                 | dB                               |
| ACRX                                                                                                                   | f=10Hz to 20KHz,<br>$V_{IS}$ = 1Vrms @R <sub>L</sub> =32Ω<br>Source Impedance=0Ω |                                         | -100           |                 | dB                               |
| Power Supply Ripple Rejection PSRR                                                                                     |                                                                                  |                                         | -100           |                 | dB                               |
| BW                                                                                                                     | @R <sub>L</sub> =50Ω                                                             |                                         | 80             |                 | MHz                              |
| $t_{ON} \begin{tabular}{ll} $V_{IS}$= $\pm 100 mV & @R_L$=$32\Omega \\ S \ switches from High to \\ Low \end{tabular}$ |                                                                                  |                                         | 50             |                 | mS                               |
| toff                                                                                                                   | V <sub>IS</sub> = ±100mV @R <sub>L</sub> =32Ω<br>S switches from Low to<br>High  |                                         | 15             |                 | mS                               |
| ROTECTI                                                                                                                | ON                                                                               | ,                                       | -              |                 | 1                                |
| $V_{POS	ext{-}}$                                                                                                       | V <sub>COM</sub> Rising Edge                                                     |                                         | 4.1            |                 | V                                |
|                                                                                                                        | RPD D SIGNA RAUDIO RFLAT ΔRON VIS THD+N SNR OIRR ACRX PSRR BW ton toff ROTECTIO  | Raudio   Vis= -3.0V~+3.0V     Iout=30mA | D SIGNAL RANGE | D SIGNAL RANGE  | R <sub>PD</sub>   D SIGNAL RANGE |

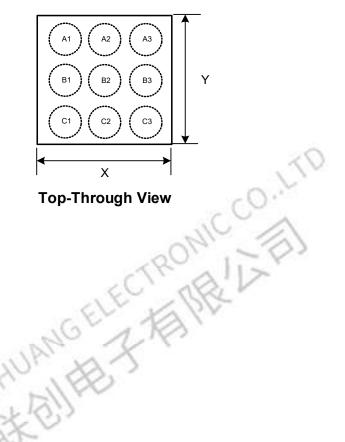


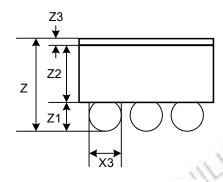
| Positive OVP Hysteresis         | V <sub>POS-HYS</sub>                            | V <sub>сом</sub> Falling Edge    |      | 300  |     | mV     |
|---------------------------------|-------------------------------------------------|----------------------------------|------|------|-----|--------|
| Positive OVP Response           | t <sub>FP</sub>                                 | V <sub>COM</sub> =1V to 6 step   |      | 0.6  |     | uS     |
| Time                            |                                                 | @R <sub>NC</sub> =1KΩ            |      |      |     |        |
| Positive OVP Recovery Time      | t <sub>FPR</sub>                                | V <sub>COM</sub> =6V to 1 step   | 130  |      | uS  |        |
| 1 oslave ovi recovery fille     | LLLK                                            | @R <sub>NC</sub> =1KΩ            | 130  |      |     |        |
| Positive OVP Leakage            | I <sub>POS</sub> -                              | V <sub>COM</sub> =+35V           |      | 66   | 90  | uA     |
| Current                         | OVP                                             | @R <sub>NC</sub> =1KΩ            |      | 00   |     |        |
| NEGATIVE OVER VOLTAGE           | PROTECT                                         | ION                              |      |      |     |        |
| Negative OVP Lockout Threshold  | V <sub>NEG-</sub>                               | V <sub>COM</sub> Falling Edge    |      | -4.1 |     | V      |
| Negative OVI Edekodi Illieshold | OVP                                             | VCOM I aming Lage                | -4.1 |      |     |        |
| Negative OVP Hysteresis         | V <sub>NEG</sub> - V <sub>COM</sub> Rising Edge |                                  |      | 600  |     | mV     |
| Negative OVI Trysteresis        | HYS                                             |                                  |      | 000  | 1   | ) IIIV |
| Negative OVP Response           | t <sub>FN</sub>                                 | V <sub>COM</sub> =-1V to -6 step | 0.6  |      | 3   | uS     |
| Time                            |                                                 | @R <sub>NC</sub> =1KΩ            |      |      |     |        |
| Negative OVP Recovery           | 1                                               | V <sub>COM</sub> =-6V to -1 step | 150  |      |     | uS     |
| Time                            | t <sub>FNR</sub>                                | @R <sub>NC</sub> =1KΩ            |      |      |     |        |
| Negative OVP Leakage            | I <sub>NEG-</sub>                               | V <sub>COM</sub> =-35V           | 7    | 100  | 140 | uA     |
| Current                         | OVP                                             | @R <sub>NC</sub> =1KΩ            | 18   | 100  | 140 | uA     |
| THERMAL PROTECTION              |                                                 |                                  |      |      |     |        |
| Thermal Shutdown                | T <sub>SHDN</sub>                               | 001                              | (D)  | 150  |     | °C     |
| Thermal Hysteresis              | T <sub>HYST</sub>                               | JAI WALL                         |      | 20   |     | °С     |

**Table-5 Electrical Characteristics** 


### Note:

- (1) Flatness is defined as the difference between maximum and minimum value of ON-resistance at the specified analog signal voltage points.
- (2) RON matching between channels is calculated by subtracting the channel with the lowest max Ron value from the channel with the highest max Ron value.
- (3) Crosstalk is inversely proportional to source impedance





# **Package Outline Dimensions**

### WLCSP-9B



**Bottom-Up View** 





Side View

Fig.4 Package Outline Dimensions

| Cumbal  | Dimensions In Millimeter |       |        |  |  |  |
|---------|--------------------------|-------|--------|--|--|--|
| Symbol  | Min.                     | Тур.  | Max.   |  |  |  |
| S X - X | 1.14                     | 1.17  | 1.2    |  |  |  |
| Υ       | 1.14                     | 1.17  | 1.2    |  |  |  |
| X1      |                          | 0.18  |        |  |  |  |
| X2      |                          | 0.40  |        |  |  |  |
| X3      | 0.21                     | 0.23  | 0.25   |  |  |  |
| Y1      |                          | 0.18  |        |  |  |  |
| Y2      |                          | 0.40  |        |  |  |  |
| Z       | 0.545                    | 0.575 | 0.605  |  |  |  |
| Z1      | 0.165                    | 0.185 | 0.205  |  |  |  |
| Z2      | 0.3525                   | 0.365 | 0.3775 |  |  |  |
| Z3      | 0.02                     | 0.025 | 0.03   |  |  |  |

**Table-6 Package Outline Dimensions** 



### **Important Note**

As the RLC product continues to improve gradually, we may experience significant changes. RLC reserves the right to correct, modify, enhance, and amend the products and services they provide, as well as the right to discontinue any product or service. Before placing an order, customers should obtain the latest information to verify that it is current and complete. All products sold must comply with RLC's terms and conditions in order to ensure proper processing of orders. RLC guarantees that the products they sell conform to the terms and conditions applicable to semiconductor sales. Only under this guarantee does RLC consider it necessary to employ testing and quality control measures for their products. Unless mandated by applicable laws requiring strict compliance, there is no obligation for testing all product parameters. RLC does not assume responsibility for customer product design or application. The materials provided contain circuit examples and usage methods solely for reference purposes; they do not guarantee suitability for volume production designs. Additionally, these materials may contain errors that could result in damages incurred by customers; therefore, RLC disclaims any liability in such cases. Customers are advised to use products within the limits specified in these materials while paying particular attention to absolute maximum ratings, operating voltages, and voltage characteristics. Any use of products outside of these specifications absolves RLC from responsibility; customers must accept full responsibility themselves. To minimize risks associated with customer-designed applications, adequate design safety measures should be implemented. When using RLC products, please ensure compliance with relevant laws and regulations pertaining to your country or region regarding application standards as well as testing requirements related to safety performance. For exports of RLC products overseas, it is essential that you adhere strictly to foreign exchange regulations and transaction laws throughout all necessary procedures involved in exportation processes. In case of disposal of any abandoned RLC product(s), please follow appropriate rules and regulations for proper disposal.

RLC products are not designed to be radiation - resistant. Based on the intended usage, customers can incorporate radiation protection measures during the product design process. Under normal circumstances, RLC products do not harm human health. However, since they contain chemicals and heavy metals, do not put them in your mouth. Additionally, the fracture surfaces of wafers and chips can be sharp. When touching them with bare hands, please be careful to avoid injury. Semiconductor products have a certain probability of failure or malfunction. To prevent disruptions and social damages resulting from personal accidents, fire accidents, etc., as well as to avoid malfunctions, customers are required to be responsible for comprehensive design, implementing fire - spread prevention measures, and safety design against misoperation. Please conduct a full assessment of the entire system, and customers can determine its applicability on their own. This material also includes content related to the company's copyright and know - how. The records in this material are not intended to promise or guarantee the implementation and use of the company's and third - party intellectual property and other rights. Without the permission of our company, it is strictly prohibited to reprint, copy any part of this work, or disclose the material information to third parties.

RLC shall not be held responsible for any damage or harm that occurs which is not related to the product itself, as well as for any infringement of third - party rights such as intellectual property rights. For more details about this material, please contact our sales office.